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STABLE NORM ON HOMOLOGY AND GEODESICS ON
TRANSLATION SURFACES

EUGENE GUTKIN AND DANIEL MASSART

ABSTRACT. We study the stable norm on the homology of a closed ori-
ented surface endowed with a possibly singular Riemannian metric. We
apply our results to the asymptotic counting of the simple homology
classes and the parallel bands of closed geodesics on translation sur-
faces.

1. INTRODUCTION

The stable norm on the homology of a manifold depends on the choice of a
Riemannian metric [Fe 69, G-L-P 81]. It has been extensively used in geom-
etry and analysis. See [Ba 94, BI94, McS-R 95 I, Mt 97]. For convenience
of the reader, we briefly recall the basic definitions.

Let (M, g) be a Riemannian manifold. We denote by £() the length, with
respect to the metric g, of a connected, rectifiable curve. By multicurves
we will mean formal linear combinations of curves. If v = Y .r;y; is a
multicurve, we set ||v|| = >, |r:|¢(v;). Let h € Hy(M,Z) be a homology
class. Its stable norm is ||h|| = min,, ||v||, where 4 runs through the geodesic
multicurves in the class h.

An alternative definition of the stable norm is due to H. Federer [Fe 69].
It is based on the notion of the mass of a Lipschitz current. The stable
norm of h € Hy(M,R) is then the minimal mass of a Lipschitz current in
the homology class h. Federer’s approach allows to minimize over more
general objects than the multicurves or laminations. However, J. Mather
proved that the minimizing currents are supported by geodesic laminations.
See [M 91].

Since the stable norm is defined by the length, it makes sense for the
singular Riemannian metrics. The latter arise in several contexts. In par-
ticular, flat Riemannian surfaces with singular points, and their geodesic
flows, are closely related to the billiards in polygons. See [GJ 00] and the
bibliography there.

The theme of the present work is the stable norm on possibly singular
Riemannian surfaces. Our goal is to use the stable norm to study the closed
geodesics on certain special, singular Riemannian surfaces. These are the
so-called translation surfaces [GJ 00], and they are closely related to rational
polygons. This relationship, and its applications to the polygonal billiard
dynamics, which go back to [ZK 75|, are well represented in the modern
literature. See, e. g., [EsMa 01, Gu 84, GHT 01, KS 00, Ma 88, Ma 90,
Ve 89, Vo 96] and the survey [Gu 96]. However, we believe that by bringing
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in the stable norm on the homology of flat surfaces, we open up a new and
promising aspect in this relationship.

We will now describe the contents of the paper in more detail.

In section 2 we briefly discuss the relationship between the periodic bil-
liard orbits in rational polygons and the closed geodesics on translation and
half-translation surfaces. The latter are equivalent to Riemann surfaces with
quadratic differentials [Ga 95]. Both can be viewed as Riemannian surfaces
with singular, flat metrics. H. Masur has obtained in [Ma 88, Ma 90] the
quadratic lower and upper bounds on the counting function for the families
of closed geodesics on these surfaces. See Theorem 1 for the precise for-
mulation. Masur’s proof does not offer any geometric interpretation of the
constants that arise in this respect, and may have a complicated dependence
on the surface. These are the so-called quadratic constants. We refer the
reader to [GJ 00, Ve 89, Vo 96] and [EsMa 01] for more information. The
need for the geometrically meaningful constants in Masur’s bounds leads
to the problem of estimating the growth rate for the number of simple ho-
mology classes for these surfaces. In Proposition 3 we obtain a geometric
lower bound on the latter. The bound is quadratic, and the corresponding
quadratic constant involves the unit ball of the stable norm.

In section 3 we study the structure of the unit ball of the stable norm
on translation surfaces. The real homology of a translation surface, M,
contains a particular plane. It is determined by the metric, and is called the
holonomy plane of M. See [GJ 00] and [KS 00]. In particular, we prove that
the stable norm, restricted to the holonomy plane, is euclidean. See Theorem
8. Suppose, for concreteness, that the genus of M is greater than one. Then
Theorem 8 is in contrast with the situation for non-singular metrics. See
[Mt 97] and [Mt 00]. On a heuristical level, the results of [Mt 97, Mt 00]
mean that the better a minimizing current fills out the surface, the smoother
is the stable norm at the corresponding homology class.

Some of the work on the paper was done in the Summer of 1998 while
the authors were visiting the University of Freiburg. It is a pleasure to
thank Victor Bangert for the invitation and the faculty and staff of the
Mathematics Institute for their hospitality.

2. GROWTH RATE FOR SIMPLE HOMOLOGY CLASSES

To motivate the material in this, and the following section, we slightly
digress from the stable norm, and briefly discuss polyonal billiards. Several
basic questions about billiard orbits in polygons are open. See [Gu 96] and
the bibliography there. Let P be a polygon, and denote by ep(x) the number
of parallel bands of periodic billiard orbits in P, of length less than x. Some
of the open questions concern the asymptotics of ep(z), as x goes to infinity.
If P is rational, then ep(x) has asymptotic quadratic bounds, from both
above and below. This is a direct consequence of the results of H. Masur on
the growth rate of closed orbits for quadratic differentials [Ma 88, Ma 90].
For convenience of the reader, we formulate these results below.

Theorem 1. [H. Masur] Let (M, g) be a Riemann surface with a quadratic
differential. Denote by f(x) the number of cylinders of closed leaves of length
less than x. Then there exist constants 0 < ¢1 < ¢co9 < 00 such that for x
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sufficiently large we have
(1) c1z? < f(x) < cpz®.

The proof of Theorem 1 in [Ma 88, Ma 90] yields no information on the
constants in inequality (1). In what follows we use the stable norm on the
homology to give a geometric interpretation of the lower bound in equation

(1).

Definition 2. Let (M, g) be a closed surface with a (possibly singular) Rie-
mannian metric. A homology class h € Hy(M,Z) is simple if it has a simple
closed curve as a length-minimizing representative.

Note that the set SH = SH(M, g) C H1(M,Z) of simple homology classes
depends on the metric. If h € SH, then any of its minimal representatives is
a simple closed geodesic. We denote by n(x) the number of simple homology
classes of stable norm less than x. The main result of this section is a
quadratic lower bound on n(x).

Let s > 1 be the genus of the surface M. The vector space H!(M,R) =~
R?% has a natural symplectic structure. Transferred by the Poincare duality
to H1(M,R), it is given by the intersection number of homology classes.
We will refer to it as the symplectic intersection form on the homology.
It induces the symplectic volume form on Hy(M,R). Note that all these
structures do not depend on the metric. Let B C Hy(M,R) be the unit ball
with respect to the stable norm, and let vol(B) be its symplectic volume.
The positive number vol(B) does depend on the metric.

Proposition 3. Let (M,g) be an oriented, closed surface with a (possibly
singular) Riemannian metric. Let s be the genus of M. Then for any

c < {/slvol(B) the inequality
(2) cx® < n(x)
holds for all sufficiently large x.

Proof. Suppose first that the metric ¢ is nonsingular. Then every integer
homology class has a length-minimizing representative which is a union of
at most s simple closed geodesics. See, for instance, [Mt 97] for a proof.
Hence the number of elements h € Hy(M,Z) with stable norm less than x is
bounded above by n(x)®/s!. Set B(x) = z-B C H;(M,R), the ball of radius
z. Thus

n(z)®
s!
But the cardinality |B(z)NHy (M, Z)| grows asymptotically as vol(B)z?%. Let

f and g be positive functions on R;. We will use the notation f(z) ~ g(x)
to indicate that the ratio converges to one, as = goes to infinity. Then

(4) |B(x) N Hy(M,Z)| ~ vol(B)x**.

(3) |B(z) N H1(M, Z)| <

Combining equations (3) and (4), we obtain

(5) v/ slvol(B) < lim inf %

T—00
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This implies our claim in the nonsingular case. To prove the inequality (2)
for metrics with singularities, we use the fact that if (M, g) is a Riemann-
ian surface with cone points, then it is a limit, in the Hausdorff-Lipschitz
topology (see [G-1-P 81], 3.19, p. 42), of a sequence, (M, g), of nonsingular
surfaces. The claim follows. See the next subsection. O

2.1. Approximation in the Hausdorff-Lipschitz topology.

Lemma 4. The injectivity radius is continuous with respect to the Hausdorff-
Lipschitz distance.

Proof. Take € > 0. We want a 6 > 0 such that for any two surfaces M,
M, if the Hausdorff-Lipschitz distance dgr,(M, M) is less than 8, then the
difference between the injectivity radii |rn;(M) — 74, (M) is less than e.

For any 6 > 0, dyr(M, M’) < é implies that there exists a homeomor-
phism ¢: M — M’ with Lipschitz constant Lip(¢) such that log(Lip(¢)) +
log(Lip(¢~1)) < & (this is where we use the Lipschitz part of the Hausdorfl-
Lipschitz distance). Then for any embedded disc in M, with radius r, its
image under ¢ is an embedded disc in M’, of radius at least exp(—8)r. Hence
Tinj(M') > exp(=06)r X 14 (M) and symetrically ry,,;(M) > exp(—8)r X
Tinj(M') so

[ing (M) — Ting (M")] < (exp(8) — 1) max(vin (M), 7in;(M'))
which proves the lemma. O

Lemma 5. Let M be a Riemannian surface. There exists a number C(M)
such that for any € > 0, there ewists a > 0 such that for any M' with
dyr(M, M) < «, for any integer homology class h, we have

1Pllar = W7ol azr| < CM) ||| are.

Proof. Take € > 0. By the above lemma there exists 6; such that
1
dHL<M7 M/) S 6 implies 27“mJ<M) 2 ij<M/) 2 §Tm]<M)

Let h be an integer homology class, and ~ a minimising representative of h.
Cut v into N pieces of length less than half the injectivity radius of M. Let

x;,1 € Z/NZ be the endpoints of the pieces in cyclic order along ~. Here we

consider the manifolds M and M’ as identified so the points x; belong to any

of them. Since the distance between x; and x;41 is less than the injectivity

radius of M’, there is a unique geodesic segment in M’ joining x; to x;41

and the broken geodesic 4" made up with those segments is homotopic to ~.
Now take &9 such that for dyr (M, M') < 82 we have,

for all z,2" € M, |dy(z, ") — dpp(z,2")] < ¢

(this is where we use the Hausdorff part of the Hausdorfl-Lipschitz distance).
Assume M and M’ are 8-close with & = min(é1, 62). Then if the length, in
M, of 4/ is less than

Y. dwlrnzin) <) (duleszin +e
1€ Z/NZ t€L/NZL
S lM<’}/) + Ne¢e
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so there exists in M’ a closed geodesic homologic to v, of length less than
l M(’Y) + Ne. O

Remark

e The constant C'(M) above only depends on the injectivity radius, of
M, which is bounded below on compact sets of the space of Riemann-
ian surfaces. So what we have proved really is that the stable norm is
uniformly continuous on the space of Riemannian surfaces, the topol-
ogy at the source being the Hausdorff-Lipschitz one, and the topology
on stable norms being that of uniform convergence on compact subsets

e Uniform continuity allows us to extend the above Lemma to the clo-
sure, with respect of the Hausdorff-Lpischitz distance, of the space of
Riemannian surfaces.

Corollary 6. The volume of the unit ball of the stable norm is uniformly
continuous, with respect to the Hausdorff-Lipschitz topology.

Theorem 7. Let M be a metric surface in the Hausdorff-Lipschitz closure
of the set of Riemannian surfaces. Then the counting function of M is
asymptotically quadratic, with constant the colume of the unit ball of the
stable norm of M.

Proof. Let M, be a sequence of Riemannian surfaces converging to M. Let
Cn, ¢ be the volumes of the stable norms of M,,, M respectively. Take ¢ > 0.
Pick N, and T, so that for any n > N, T" > I, we have

o e, — | <c¢
e for any integer homology class h, |||h||ar — ||2]|arr] < C(M)||h]|are

N, T
cN—I—ezMTLs)ch—e.

Under these assumptions we have, for any large enough 7',
Nar(T) > Ny (T(1 = eprpe)) > (en — €)(1 + cpry€)*T?
> (c—26)(1 4+ (c—€)e)*T?
and likewise,
(en +€)T? > N (T) > Ny (T(1 — ce))

whence

1 _(C<1‘_2€€))€]2 Z Nj\j{gT) > (c—20)[1 = (c — ).
O

3. APPLICATIONS TO PERIODIC AND SINGULAR ORBITS ON TRANSLATION
SURFACES

A translation surface is a closed Riemann surface with a holomorphic
differential. See [GJ 00]. Let M be the surface, let ¢ be the differential,
and let 3 C M be the set of zeroes of (. We cover M \ ¥ with contractible
patches U; : 1 < ¢ < n. Integrating ¢ in U; yields complex coordinates
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zi : Uy — C. If U; and U; overlap, then the two coordinates in U; NU; are
related by

(6) 25 = 2i + 5.

If we replace a linear differential with a quadratic differential, then the
preceding construction of local coordinates still applies. However, instead
of equation (6), we have

(7) Z; = +z; + Cij-

Equations (6,7) explain the names ”translation surface” and "half-translation
surface”. See [GJ 96, GJ 00], where equations (6,7) were the starting point.
The study of quadratic differentials belongs to the classical complex anal-
ysis [Ga 95]. By taking a 2-to-1 covering, if necessary, any half-translation
surface becomes a translation surface. This observation often allows to ex-
tend the results, obtained for translation surfaces only, to half-translation
surfaces. In view of this, and because translation surfaces naturally arise
in the study of polygonal billiards (see [Gu 96]), here we will restrict our
attention to translation surfaces only.

Let 3 C M be the finite set of zeros of (. Set ( = w + ¢*w, and for v €
Ty M\ X set ||v|l; = /w(v)? + *w(v)2. This defines a flat Riemannian metric
on M, with singularities in X, and the results of sections 2, 3 apply. The
local coordinates on M \ ¥ induced by w, *w yield a local isometry of M \ X
into the Euclidean plane. In these coordinates X, = (1,0), X«, = (0,1).
We also have

(8) dvol = w A *w, comass(w) =1, ||w||z2 = /vol(M).

For arbitrary a,b € R, set 143 = aw +bxw. We regard 7, ) as an element
in H'(M,R) and denote by hap) € Hi(M,R) the corresponding homology
class, by Poincare duality. Let L C Hy(M,R) be the plane spanned by these

classes. Following [GJ 00] and [KS 00], we say that L is the holonomy plane
of the translation surface M.

Theorem 8. Let M be a translation surface. The restrictions of stable
norm and the L?-norm on the homology to the holonomy plane are propor-
tional. More precisely

(9) Vagasy | = /OB gyl 2 = vol( M) /0 + B2.

Proof. From the rotational invariance of the metric and equation (8), we

have comass(ngp) = Va2 +b% and ||haplzz = vol(M)va? +b2. In
view of Theorem 1 of [GM], it suffices to prove the inequalty

(10) 12¢apy || = vol(M)\/m'

Let 1 be any differential 1-form, and let ¢ be an arbitrary current. Then

< ¢,n >< mass(¢) comass(n).

Let k € Hy(M,R), and let ¢min(k) be a minimizing current in the homology
class k. Specializing the inequality above, we obtain

(11) < Gmin(k), 1 >< |[k]] comass(n).
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Set k = h(q,p). Its minimizing current corresponds to the vector field X, ;) =
aXy + bXx,. Setting n = 1) in equation (11), taking into account that

< X(apy Mapy > = vol(M)(a? +b?),

and using the expression above for comass(n(a’b)), we obtain the inequality
(10). O

The theorem says that the L?-ball of radius (vol(M)) /2 is contained
in the unit ball of the stable norm, the two having the same intersection
with the holonomy plane. This intersection is a Euclidean disc which we
denote D. Actually the unit ball of the stable norm is, in turn, contained
in the orthogonal cylinder over D, that is, the inverse image of D under
the L2-orthogonal projection to the holonomy plane. Indeed this cylinder
is defined by the inequations 7,y (h) < 1 for all a,b € R with a? + % =1.
Now by equation 11 we have |1, (2)| < ||k|| for all b € Hi(M,R).

The intersection of the boundary of the orthogonal cylinder over D with
the unit ball of the stable norm does not consist only of D). Indeed, if h is
the homology class of a parallel band of periodic orbit, then the class h/||h||
belongs to this intersection. This is because, if (4 5) is the homology class of
the singular geodesic foliation with direction that of A, then |n ) (2)| = ||2]].
The same applies to the homology class of a closed curve made of saddle
connections with the same direction.

The difference between such a class and that of a geodesic in a periodic
band is that in the latter case the unit sphere of the stable norm contains
a segment with extremity h/||h|| and containing %4p) in its interior . This
is because, if h is the homology class of a parallel band of periodic orbit,
and w(h) is the width of that parallel band, then the class vol(M )h(, ) —
w(h)h, divided by its norm, also belongs to intersection of boundary of the
orthogonal cylinder over D with the unit ball of the stable norm, and the
segment joining it to h/||h|| contains hqp) in its interior.

The simplest translation surfaces are flat tori. Natural mappings of trans-
lation surfaces are the coverings. See [GJ 00, Vo 96, Gu 00]. Hence, it is
natural to study translation surfaces that admit a covering of a flat torus.
In particular, this class contains the arithmetic translation surfaces. For
instance, if S admits a covering, p : S — 1T, over a flat torus, whose branch
locus is a single point, then S is an arithmetic translation surface. See
[GJ 00]. There are several characterizations of the arithmetic translation
surfaces in the literature, both from the geometric and from the dynamical
viewpoints. See [GJ 00],[Vo 96], and [GHT 01]. This motivates the following
definition.

Definition 9. We say that a translation surface is almost arithmetic if it
admits an affine branched covering of a flat torus.

Obviously, the class of almost arithmetic translation surfaces is wider than
the class of arithmetic translation surfaces. Intuitively, a translation surface
is almost arithmetic if it can be represented by a polygon, whose vertices
belong to a lattice in the plane. An arithmetic translation surface can be
represented by a polygon, drawn on a planar lattice. See [Gu 84].

Proposition 10. A translation surface is almost arithmetic if and only if
its holonomy plane is spanned by the integer homology classes.
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Proof. Let (S,w) be any translation surface, and let Lg C Hi(S,R) be its
holonomy plane. Denote by L C H!(S,R) the image of Lg under the
Poincare duality. By definition, Lg is spanned by the cohomology classes of
the closed forms R(w) and F(w). In what follows we call L} the coholonomy
plane of the translation surface S. Note that Lg is spanned by the integer
homology classes if and only if L% is spanned by the integer cohomology
classes.

Let now (S,w) be a translation surface, and let p : S — T be a covering
of a flat torus (7, a). Then w = p*(a) and LE = p*(L}). Slightly abusing
notation, we denote by the same symbol a form and its cohomology class.
Since LY. is spanned by the integer classes, the same holds for p*(L}.).

Recall that the group SL(2,R) naturally acts on the space of translation
surfaces. See, e. g., [GJ 00]. Although, this action changes only the trans-
lation structure, and does not physically change the surface itself, we will
denote it by (S,w) +— (g- 5,9 w), where g € SL(2,R). We say that S and
g- S are affinely equivalent translation surfaces. The action of SL(2,R) does
not change the holonomy plane of a translation surface : Lyg = Lg.

Suppose now that Lg is spanned by the integer classes. Then so is the
plane L¥. Set o = R(w), 8 = F(w), 1. e., w = a+ Bi. Replacing S by a g- 5,
if nesessary, we may assume that o, 3 € H*(S,Z). Therefore the integrals of
w over the closed curves in S belong to Z+iZ. Hence the standard procedure
of the integration of w over the curves joining s € S with a reference point,
yields a mapping, p : S — C/Z2. This mapping is the desired covering.
Compare with the proof of Theorem 5.5 in [GJ 00]. O

In the course of our proof of Proposition 10 we have obtained the following
statement.

Corollary 11. Let S be a translation surface. Then the following properties
are equivalent :

1. 5 admits an affine covering over a torus ;

2. The holonomy plane of S is spanned by the integer homology classes ;

3. The coholonomy plane of S is spanned by the integer cohomology classes.

Note that if Lg is spanned by the integer classes, then its L?-orthogonal
Lé is also spanned by the integer classes. Indeed Lé = Kerp, but p. sends
the integer lattice in H; (S, R) to the integer lattice in Hy(7T,R) so its kernel
must be an integer subspace.

On a translation surface S there is a well-defined notion of direction. We
call closed geodesic a geodesic that either belongs to a periodic strip, or is
made up with saddle connections, all with the same direction. We call length
spectrum of S, and denote LS(S), the set of lengths of closed geodesics of
S. The growth function of S, denoted Ng(T'), is the number of elements of
LS(S) which are less than or equal to 7. Our main result is

Theorem 12. The growth function of an almost arithmetic translation sur-
face is asymptotically quadratic.
Remarks.

1. This property is proved in [Ve 89] for surfaces with a large group of
affine automorphisms. Generically an almost arithmetic surface has



STABLE NORM ON HOMOLOGY AND GEODESICS ON TRANSLATION SURFACES 9

a trivial group of automorphisms since the branch points are setwise
fixed.

2. our theorem ignores multiplicities in the sense that there may be several
(at most 3(genus(M) — 1)) periodic geodesics which yield the same
point in the holonomy plane. Besides, we count some singular closed
orbits along with non-singular ones.

Proof. Call 7 : Hi(M,R) — Lg the orthogonal projection with respect to
the Lo Fuclidean metric on Hy (M, R). If v is a closed geodesic with direction
0 and length [, then 7([v]) = lhe.

Besides, note that 7 ([y]) belongs to the image under 7 of Hy1(M, Z), which
is a lattice in Lg. Conversely, take a primitive point h in w(Hy (M, Z)). Tts di-
rection is completely periodic by our previous theorem. Hence some integer
homology above h in Hy(M,Z) contains a closed geodesic, or combination
thereof. The latter is impossible since h is primitive.

Therefore Ng(T') equals the growth function of the lattice w(H;(M,Z)),
which is quadratic by Minkovski’s theorem, with constant 7 divided by the
determinant of the lattice. O

REFERENCES

[Ba 94] V. Bangert, Geodesic rays, Busemann functions and monotone twist maps, Cal-
culus of Variations 2 (1994), 49-63.

[BI94] Burago, D.; Ivanov, S. Riemannian tori without conjugate points are flat. Geom.
Funct. Anal. 4 (1994), no. 3, 259-269

[Bu] P. Buser, Geometry and spectra of compact Riemann surfaces, Birkhauser, Boston
1992.

[EsMa 01] A. Eskin and H. Masur, Pointwise asymptotic formulas on flat surfaces. Ergodic
Theory Dynam. Systems 21 (2001), no. 2, 443-478.

[Fe 69] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin 1969.

[Ga 95| F. Gardiner, Teichmiiller theory and quadratic differentials, John Wiley, Brisbane
1987.

[G-L-P 81] M. Gromov, J. Lafontaine, and P. Pansu, Structures métriques pour les
variétés riemanniennes, CEDIC, Paris 1981.

[Gu 84] E. Gutkin, Billiards on almost integrable polyhedral surfaces, Erg. Theor. Dyn.
Sys. 4 (1984), 569-584.

[Gu 96] E. Gutkin, Billiards in polygons: survey of recent results, J. Stat. Phys. 83 (1996),
7—26.

[Gu 00] E. Gutkin, Branched coverings and closed geodesics in flat surfaces, with appli-
cations to billiards ; pp. 259273 in “Dynamical Systems from Crystal to Chaos”,
World Scientific, Singapore, 2000.

[GHT 01] E. Gutkin, P. Hubert, and T. Schmidt, Periodic points on translation surfaces
satisfying the lattice condition, preprint, 2001.

[GJ 96] E. Gutkin and C. Judge, The geometry and arithmetic of translation surfaces
with applications to polygonal billiards. Math. Res. Lett. 3 (1996), 391-403.

[GJ 00] E. Gutkin and C. Judge, Affine mappings of translation surfaces : Geometry and
arithmetic, Duke Math. J. 103 (2000), 191-213.

[GM] E. Gutkin and Daniel Massart, Stable norm and L2-norm on homolgy of surfaces,
preprint, CIMAT

[KS 00] R. Kenyon and J. Smillie, Billiards on rational-angled triangles. Comment. Math.
Helv. 75 (2000), 65-108.

[L 82] G. Levitt, Feuilletages des surfaces. Annales de I'Institut Fourier, 32, 2 (1982),
179-217.

[Mt 96] D. Massart, Normes stables des surfaces, Theése de doctorat, Ecole Normale, Lyon
1996.



STABLE NORM ON HOMOLOGY AND GEODESICS ON TRANSLATION SURFACESL0

[Mt 97] D. Massart, Stable norms for surfaces : local structure of the unit ball at rational
directions, GAFA 7 (1997), 996-1010.

[Mt 00] D. Massart, On Aubry sets and Mather’s action functional, preprint, 2001.

[Ma 88] H. Masur, Lower bounds for the number of saddle connections and closed trajec-
tories of a quadratic differential, pp. 215-228 in Math. Sci. Res. Inst. Publ. 10, Vol.
1, 1988.

[Ma 90] H. Masur, The growth rate of trajectories of a quadratic differential, Erg. Theor.
Dyn. Sys. 10 (1990), 151-176.

[M 91] J. Mather, Action minimizing invariant measures for positive definite Lagrangian
systems, Math. Z. 207 (1991), 169-207.

[McS-R 95 1] G. McShane and I. Rivin, Simple curves on hyperbolic tori, C. R. Acad. Sci.
Paris 320 (1995), 1523-1528.

[McS-R 95 II] G. McShane and 1. Rivin, A norm on homology of surfaces and counting
simple geodesics, Int. Math. Res. Not. 2 (1995), 61-69.

[Ve 89] W. Veech, Teichmiiller curves in moduli space, Eisenstein series and an application
to triangular billiards, Invent. Math. 97 (1989), 553-583.

[Vo 96] Ya. Vorobets, Plane structures and billiards in rational polygons: the Veech al-
ternative, Russ. Math. Surveys 51 (1996), 779-817.

[ZK 75] A. Zemlyakov and A. Katok, Topological transitivity of billiards in polygons,
Math. Notes 18 (1975), 760-764.

Mathematics 253-37

1200 California Blvd
Caltech

Pasadena, CA 91125, USA

e-mail : egutkin@its.caltech.edu

UMR 5030, Université Montpellier I1, France and
CIMAT, Guanajuato, Mexico
e-mail : massart@cimat.mx



